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Using the arithmetic mean to summarize normalized benchmark results 
leads to mistaken conclusions that can be avoided by using the preferred 
method: the geometric mean. 
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In the literature, performance results are frequently 
summarized using i.he arithmetic mean of performance 
ratios, leading, in some cases, to wrong conclusions (see 
Tables 2 and 3 in [Z]) or, at best, inappropriate statistics 
(see Tables’ 12 and 13 in [3]). We hope to elucidate this 
inadvertent misuse of statistics in reporting results by 
pointing out why the arithmetic mean should not be 
used to summarize normalized performance numbers, 
and showing why the geometric mean is the more ap- 
propriate measure. We do this in the form of some 
simple rules for improved statistical analysis of per- 
formance benchmark results. 

THREE RULES FOR SUMM.ARIZING PERFOR- 
MANCE BENCHMARK RESIJLTS 
In comparing computers according to some metric, such 
as object size, run time, or throughput, it is common to 
run benchmarks, normalize the results to a “known 

‘The major conclusions in (31 are not mvalidated by the results in this paper. 
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machine,” and then average these normalized quanti- 
ties. The desire to have one number that represents rela- 
tive system performance is certainly understandable, as 
we want to draw simple conclusions about one ma- 
chine’s worth compared to others. However, in order 
that these conclusions be meaningful and useful, the 
following three rules should be observed. 

RULE 1: Do Not Use the Arithmetic Mean 
to Average Normalized Numbers 
The arithmetic mean of N numbers is the sum of the 
numbers divided by N. When the arithmetic mean is 
calculated from normalized numbers, the results are 
meaningless. In Table I, derived from an example re- 
ported in the literature [2], all run times are normal- 
ized to Machine R. These normalized numbers are then 
averaged, and the conclusion drawn that Machine M is 
one percent slower than R, and Machine Z, seven per- 
cent slower. 

However, if we normalize to Machine M and not R, 
(as shown in Table II), we must conclude that R is now 
32 percent slower than M. How can this be? It cannot: 

218 Communications of the ACM March 7986 Volume 29 Number 3 



Conlputiq Practices 

The problem is the arithmetic mean, which gives TABLE I. Incorrect Use of the Arithmetic 
meaningless results for normalized numbers. Mean on Normalized Numbers 

To illustrate the problems with the arithmetic mean 
using a simple example, consider three machines with 
the benchmark run times given in Table III. Machine Y 
is twice as fast as Machine X for Benchmark 1, but half 

as fast for Benchmark 2. Similarly, Machine Z is half as 
fast as Machine X for 1, but twice as fast for 2. Intui- 
tively, these three machines have equivalent perfor- 
mance: Each is slower than the others on one of the 
benchmarks, but faster by the same ratio on the other 
benchmark. However, if we normalize to Machine X 
and compute the arithmetic mean, we find that Ma- 
chines Y and Z are 25 percent slower than X. 

Processor 
Benchmark --~- 

R M 2 

E 417 (1 .OO) 244(0.59) 134 (0.32) 
F 83 (1 .OO) 70 (0.84) 70 (0.85) 
H 66 (1.00) 153(2.32) 135(2.05) 
I 39,449 (1 .OO) 33,527 (0.85) 66,000 (1.67) 

K 772 (1 .OO) 368 (0.48) 369 (0.45) 

Arithmetic (1 .OO) (1 .Ol) (1107) 

mean 

Worse yet, if we normalize to Machine Y and com- 
pute the arithmetic mean (Table IV), we find that Ma- 
chine Y is now 25 percent faster than X and more than 
two times faster than Z despite the fact that the total 
benchmark run times for X and Z were less than that ’ 
for Y. Clearly, the arithmetic mean is worthless in this 
context: When used indiscriminately, it leads to very 
wrong conclusions. 

The numbers in parentheses are normalized to Machine R. 

This table has bean adapted from [2] by permission of the author. 

TABLE II. Same Raw Data, but Different Results 

As a corollary to what has already been discussed, it 
is now relevant to introduce RULE 1.1: The sum of nor- 
malized numbers is also meaningless. This is fairly obvious 
since the sum is merely N times the arithmetic mean. 

Processor 
Benchmark --- 

R M i! 

E 417(1.71) 244 (1.00) 134(0.55) 
F 83 (1.19) 70 (1.00) 70 (1 .OO) 

H 66 (0.43) 153 (1 .OO) 135 (0.88) 

I 39,449 (1.18) 33,527 (1 .OO) 66,000 (1.97) 

K 772(2.10) 368 (1.00) 369 (1.00) 

Arithmetic (1.32) (1 .OO) (1.08) 

mean 

RULE 2: Use the Geometric Mean 
to Average Normalized Numbers 
The geometric mean of N numbers is the product of the 
numbers to the l/Nth power. Unlike the arithmetic 
mean, the geometric mean is meaningful when applied 
to normalized numbers. In Table V, the numbers from 
our simple XYZ example are repeated, but this time 
with the geometric means. Now the conclusion is more 
useful: The machines are shown to be roughly equal. 
Even if we normalize to Machine Y and not X, the 
results are the same (Table VI). 

If, as in Table VII, we use the geometric mean instead 
of the arithmetic mean for the results presented in Ta- 
ble I, then we conclude that Machine M is 14 percent 
faster than Machine R, and Machine Z is 16 percent 
faster-very different conclusions from those presented 
in the original paper. The same results are derived in 
Table VIII, where run times are normalized to Machine 
M instead of Machine R, since 1.17 is the reciprocal of 
0.86. Further, by comparing Machine M to Machine Z 
directly from the geometric means without renormaliz- 
ing, we see that Machine M is 2 percent slower than 
Machine Z for these benchmarks (0.86/0.84 = 1.02). 
The ability to compare means without regard to nor- 
malization is an important property and unique to the 
geometric mean. as shown in “A Proof that the Geomet- 
ric Mean Is the Only Correct Average of Normalized 
Measurements” section. 

To summarize this discussion, we present the two 
corollaries to RULE 2: 

RULE 2.1: The geometric mean can be used regardless of 
how the numbers are normalized. 

The numbers in parentheses are normalized to Machine M 

TABLE Ill. Another Incorrect Use of the Arithmetic 
Mean on Normalized Numbers 

Processor 
Benchmark - 

X Y 2 

1 20 (1.00) lO(O.50) 40 (2.00) 
2 40 (1.00) 80(2.00) 20 (0.50) 

Arithmetic mean (1 .OO) (1.25) (1.25) 

The numbers in parentheses are normalized to Machine X. 

TABLE IV. The Arithmetic Mean Is Sinking Fast 

Processor 
Benchmark 

X Y i! 

1 20 (2.00) 10 (1 .OO) 40(4.00) 
2 40 (0.50) 80 (1 .OO) 20 (0.25) 

Arithmetic mean (1.25) (1 .OO) (2.13) 

The numbers in parentheses are normalized to Machine Y. 
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TABLE V. Correct Use of the Geometric Mean 

Processor 
Benchmark --~ 

X Y f 

1 -30 (1 .OO) 10 (0.50) 40 (2.00) 
2 40 (1 .OO) 80 (2.00) 20 (0.50) 

Geometric mean (1 .OO) (1 .OO) (1 .OO) 
- 

The numbers in parentheses are normalized to Machine X. 

TABLE VI. The Geometric Mean Is Independent of Normalization 

Processor 
Benchmark - 

X Y 2 

1 20 (2.00) 10 (1 .OO) 40 (4.00) 

2 4.0 (0.50) 80 (1 .OO) 20 (0.25) 

Geometric mean (1 .OO) (1 .OO) (1 .OO) 

The numbers in parenthr?ses are normalized to Machine Y. 

TABLE VII. Another Correct Use of the Geometric Mean 

Benchmark - 
R 

Processor 

Y 2 

E 417 (1.00) 244 (0.59) 134 (0.32) 

F 83 (1 .OO) 70 (0.84) 70 (0.85) 
H 66 (1 .OO) 153 (2.32) 135 (2.05) 

I 39,449 (1 .OO) 33,527 (0.85) 66,000 (1.67) 

K 772 (1 .OO) 368 (0.48) 369 (0.45) 

Geometric (1.00) (0.86) (0.84) 

mean 

The numbers in parentheses are normalized to Machine R 

TABLE VIII. A Different Normalization 

Processor 
Benchmark -- 

R M 2 

E 417(1.71) 244 (1 .OO) 134 (0.55) 

F 83 (1.19) 70 (1 .OO) 70 (1 .OO) 
H 66 (0.43) ‘153 (1 .OO) 135 (0.88) 
I 39,449 (1.18) 33,!527 (1 .OO) 66,000 (1.97) 
K 772 (2.10) :368 (1 .OO) 369 (1 .OO) 

Geometric (1.17) (1 .OO) (0.99) 

mean 

The numbers in parentheses are normalized to Machine M 

RULE 2.2: The geometric mean can be used euen if the 
numbers are not normalized; the resulting means can then 
be normalized. 

RULE 3: Use the Sum (or arithmetic mean) 
of Raw, Unnormalized Results whenever 
This “Total” Has Some Meaning 
Sometimes, the sum of benchmark results has meaning: 
for example, total run time for a set of benchmarks, 
However, it is important to calculate,this sum using 
raw, unnormalized data since we have shown that 
summing (or taking the arithmetic mean) of normalized 
numbers gives worthless results. Ratios of these unnor- 
malized sums can then be taken to determine relative 
performance. 

When summing or taking the arithmetic mean of raw 
results, it is implied that each individual benchmark is 
of equal importance. Typically, however, you want to 
weight each benchmark result to simulate a real load. 
In Table IX, for example, where our simple XYZ exam- 
ple is repeated, Benchmark 1 consumes 60 percent of 
our load mix, and Benchmark 2 consumes 40 percent. 
This means that Machine X is now 14 percent “faster” 
than Z and 36 percent “faster” than Y. This conclusion 
holds regardless of how we normalize the arithmetic 
mean since we have started with raw (unnormalized) 
data. 

A PROOF THAT THE GEOMETRIC MEAN 
IS THE ONLY CORRECT AVERAGE OF 
NORMALIZED MEASUREMENTS 
Earlier, we showed how using the arithmetic mean to 
average normalized measurements leads to inconsisten- 
cies, whereas using the geometric mean does not. In 
this section, we provide a proof that the geometric 
mean is the only average that has the multiplicative 
property and therefore the only appropriate measure of 
the mean in the present context. Although this result 
does not represent original mathematics (i.e., it is 
equivalent to Theorem 4 in [I] by a logarithmic trans- 
formation), it is presented here as a convenience to the 
reader. 

The multiplicative property can be stated simply: 
The mean of the products equals the product of the 
means. More precisely, suppose we have N benchmarks 
of interest, &, , PN, and three machines X, Y, and Z 
whose performance we would like to compare. After 
running the benchmarks on these machines, we find 
that p1 ran for x, seconds on Machine X. y, seconds on 
Machine Y, and z, seconds on Machine Z. We then form 
the ratios II, = y/x, and b, = z,/y;. It is customary to say 
that Machine X runs pi A, times as fast as Machine Y 
and, similarly, that Machine Y runs pi b, times as fast as 
Machine Z. We may also conclude that Machine X runs 
/I, a,b, times as fast as Machine Z and that Machine Y 
runs p, a;’ as fast as Machine X. By choosing a number, 
say A, that summarizes the overall performance com- 
parison between Machine X and Machine Y. we may 
now move to the statement that, overall, Machine X is 
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TABLE IX. Sums of Raw Data Can Make Sense 
- - 

Benchmark 
Processor 

Weight 
x Y z 

1 0.6 20 10 40 
2 0.4 40 80 20 

Weighted arithmetic mean 28 38 32 
Normalized to X 1.00 1.36 1.14 

A times as fast as Machine Y on &, . . , PAI. If we now 
choose a number, B, and assert that Machine Y is B 
times as fast as Machine Z, overall, then common sense 
will dictate that Machine X should be AB times as fast 
as Machine Z. This is the multiplicative property: The 
product of A and B should equal the mean of albl, . . , 
aNbN. (For numerical examples, see Tables V, VI, and 
VII on page 220). 

To formulate the problem mathematically, let A = 
f(at, . . , a,,). In other words, A is some unknown func- 
tion, f, of a,, . . , a,. We assume a, > 0. Since A is an 
unweighted expected value or mean. the function f 
must satisfy the following three properties: 

Property 1 (reflexive property): 

f(a, . , a) = a; 

Property 2 (symmetric property): 

f(Ul, . . . ., a,) = f(u,(~), . . . . a,(,)) 

for all permutations c of the numbers 1, . . , n. This 
second property maintains that the order of the argu- 
ments off does not affect A. 

Property 3 (multiplicative property): 

fhbl, . . . 1 unbnl = fh, . . . , u,)f(b,, . . . > b,) 

We claim that Properties 1 through 3 uniquely charac- 
terize the geometric mean. To see this, first note that 
the geometric mean does satisfy Properties 1 through 3. 
We now prove that, if f satisfies Properties 1 through 3, 
thenf(u,,..., a,,) is the geometric mean. 

Observe that, for any r > 0, 

r = f(r, . . , r) 

= f(r, 1, . . . , l)f(l, r, . . , 1) . . . f (1, . . , 1, r) 

= f(r, 1, . . , 1)“. 

The first equality follows from Property 1, the second is 
arrived at by repeated applications of Property 3, and 
the last is Property 2. Hence, f (r, I, . . . , I) = rl/n for 
any r > 0. Finally, we note that Properties 2 and 3, 
together with the above calculation, imply that 

f(Ul! . . a,,) 

=f(a,, 1, . . . . l)f(l, a2, 1, , 1) .. . f(l, . . . , 1, a,) 

= ,ij f(Ui, 1, . , 1) 

It can now be seen that the only choice of A that 
satisfies Properties 1 through 3 is the geometric mean. 
As a final remark, note that a weighted geometric 
mean, which also satisfies the multiplicative property, 
may be calculated as follows: Let w,, . . . , wN be 
weights such that w, + . . . + WN = 1. The weighted 
mean is then 

ii . a? 
i=l 

The unweighted mean is the case w, = l/N, i = 1, 

, N. 

CONCLUSIONS 
In this article, we have demonstrated why the geomet- 
ric mean is appropriate for summarizing normalized 
benchmark results, and why the arithmetic mean, 
when used in this context, leads to grossly incorrect 
conclusions. 

However, it should be made clear that any measure 
of the mean value of data is misleading when there is 
large variance. For this reason, we feel that any 
meaningful summary of data should include some men- 
tion of the minimum and maximum of the data as well 
as the mean. This provides guaranteed upper and lower 
bounds on the relative performance with respect to the 
chosen set of benchmarks. 
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